

Japanese Surgical Education Summit 2nd Annual Meeting

Instructional Design and the Use of Simulation for Surgical Training: Theory to Practice

Amin Madani

Department of Surgery, McGill University, Montreal, Canada

Centre universitaire de santé McGill

McGill University Health Centre

Disclosures

Nothing to Disclose

Surgical Training

Apprenticeship model:

Changing Surgical Paradigm

Changing surgical education paradigm*:

- Limited work hours
- Decreased case volumes
- Increased emphasis on safety and accountability
- Cost control
- Emerging technologies

^{*} Frank JR, Snell LS, Cate OT, Holmboe ES, Carraccio C, Swing SR, et al. Competency-based medical education: theory to practice. Medical teacher. 2010;32(8):638-45.

What is Competence?

- "Expert surgeon":
 - Technical skills
 - Judgment, decision-making
 - Teamwork
- Deficiency in these aptitudes strongly contribute to surgi Skills rors

What is Competence?

Dreyfus, H. L., & Dreyfus, S. E. (1986). *Mind over machine: The power of human intuition and expertise in the era of the computer.* New York: The Free Press.

Instructional Design

Instructional Design

Fundamental Use of Surgical Energy™ (FUSE)

ほとんどの外科的手技でエネルギーデバイスを使用

NBC Today Show: November 2011

腹腔鏡下手術 エネルギーデバイス関連医療事故 およそ1-2/1000¹

年間200万件(米国)²

scopy. 1994 J Am Coll Surg 179:161-170

 Market engineering research f Medical and Healthcare Marketplace Guide. 1999. Frost and Sullivan, London, UK

Objectives

To outline the steps for designing a surgical curriculum

- To perform a task analysis
- To list the steps for developing a metric

To design a curriculum using best-practices in education

To describe the utility of simulation for surgical training

Instructional Design

ADDIE Framework:

- Analyze
- Design
- Develop
- Implement
- Evaluate

Instructional Design

ADDIE Framework:

- Analyze
- Design
- Develop
- Implement
- Evaluate

Instructional Design – Analyze

Needs-Assessment:

1. Gap analysis

Needs-Assessment:

2. Task analysis

- 2. Task analysis
- Evidence-based if possible
- If no evidence: expert consensus

Needs-Assessment:

- 2. Task analysis
- Challenges:
 - Difficulty unpacking expert knowledge*
 - Lack of consensus
 - Lack of data/standards

* Sullivan ME, et al. The use of cognitive task analysis to reveal the instructional limitations of experts in the teaching of procedural skills. *Acad Med* 2014; 89(5):811-6

- 2. Task analysis
- Techniques:
 - Interviews +/- video
 - Focus groups
 - In-vivo observation
 - Literature analysis
 - Think aloud

- 3. Specification of performance standards
- What is successful performance?
- What defines expertise?
- What needs to be done, under what conditions?
- Standards will be used as basis for assessment tools

- 4. Learner analysis
 - Who are the learners? What level are they?
 - Are they motivated to learn a new skill?
- 5. Organizational analysis
 - Barriers to successful performance?
 - Available resources?
 - Poor climate can hinder transfer of training
 - Timeline?
 - How does this fit into the training curriculum

Fundamental Use of Surgical Energy™ (FUSE)

Surg Endosc (2012) 26:2735–2739 DOI 10.1007/s00464-012-2263-y

Surgeons don't know what they don't know about the safe use of energy in surgery

FUNDAMENTAL USE OF SURGICAL ENERGY

Liane S. Feldman · Pascal Fuchshuber · Daniel B. Jones · Jessica Mischna · Steven D. Schwaitzberg · the FUSE (Fundamental Use of Surgical EnergyTM) Task Force

Received: 24 January 2012/Accepted: 10 March 2012/Published online: 27 April 2012 © Springer Science+Business Media, LLC 2012

Surg Endosc DOI 10.1007/s00464-015-4243-5

Surgeons have knowledge gaps in the safe use of energy devices: a multicenter cross-sectional study

Yusuke Watanabe^{1,2} · Yo Kurashima¹ · Amin Madani² · Liane S. Feldman² · Minoru Ishida³ · Akihiko Oshita^{4,5} · Takeshi Naitoh⁶ · Kazuhiro Noma⁷ · Keigo Yasumasa⁸ · Hiroshi Nagata⁹ · Fumitaka Nakamura¹⁰ · Koichi Ono¹¹ · Yoshinori Suzuki¹² · Nobuhisa Matsuhashi¹³ · Toshiaki Shichinohe¹ · Satoshi Hirano¹

Received: 15 February 2015/Accepted: 10 May 2015 © Springer Science+Business Media New York 2015

Watanabe Y, et al. Surgeons have knowledge gaps in the safe use of energy devices. Surgical Endoscopy. 2015. In Press.

Needs-Assessment:

Gap analysis

Task Analysis:

SAGES – FUSE Task Force

- Surgeons
- Anesthesiologists
- Nurses
- Engineers

ADDIE Framework:

- Analyze
- Design
- Develop
- Implement
- Evaluate

- 1. Develop instructional/learning objectives
- Objectives for achieving competencies
- Separate statement for each competency
- For surgical procedure, involves translating procedure into appropriately sized steps

- 1. Develop instructional/learning objectives
- Bloom's Taxonomy of learning:

- 1. Develop instructional/learning objectives
- Bloom's Taxonomy of learning:

- 1. Develop instructional/learning objectives
- Describes the outcome measurable
- Describes what the learner will be doing when demonstrating achievement of the objective - specific
- Define important conditions, if any
- Define criterion for acceptable performance

SAGES – FUSE Task Force

63 Learning Objectives

FUSE Curriculum

FUNDAMENTAL USE OF SURGICAL ENERGY

FUSE Example: 学習目標

- 1. 高周波エネルギーが細胞/組織におよぼす影響
- 2. 高周波エネルギーデバイスに関わる用語
- 3. エレクトロサージカルユニット(電気メス本体)の役割
- <u>4.</u> モノポーラとバイポーラの違い
- 5. エネルギーデバイス関連有害事象の発生メカニズム
- 6. 有害事象の回避する方法
- 7. 手術室火災を防ぎ、また手術室火災にどのように対処す るか

FUNDAMENTAL USE OF SURGICAL ENERGY

Instructional Design – Design

Design Training:

- Develop performance standards for each objective ("metrics")
- Acceptable level of performance for "passing"

- Metric for each learning objective or "competency" based on task analysis
- Pass score determined empirically
- Oriented towards individual or team

Instructional Design – Develop

ADDIE Framework:

- Analyze
- Design
- Develop
- Implement
- Evaluate

Instructional Design – Develop

Develop Instruction:

- Establish prerequisites
- Develop didactic material (*keep to minimum for performance-based training)
- Develop computer/web-based components
- Develop simulation scenarios, virtual patients
- Tie instruction back to learning objectives ("blueprints")

Instructional Design – Develop

Develop Instruction:

- Developing good learning strategies
 - Feedback
 - Tailor practice to weaknesses (deliberate practice)
 - Integrate metrics into teaching strategy

Example: FUSE

Instructional Design – Implement

ADDIE Framework:

- Analyze
- Design
- Develop
- Implement
- Evaluate

Instructional Design – Implement

Implement Instruction:

- Train instructors:
 - Cover curriculum and learning objectives
 - Method of delivery
 - Testing procedure
- Train learners on any new tools, registration
- Pilot (dry run) the course
- Ensure all equipment is ready/functional
- Teach the course!
- Collect data for feedback

Example: FUSE

FUNDAMENTAL USE OF SURGICAL ENERGY[™] | FUSE A SAGES Fundamentals Program

Home About FUSE v Didactic Content Testing Information v Program Coordinators Test Proctors

Fundamental Use of Surgical EnergyTM (FUSE)

FUSE, is an educational program comprised of an interactive web-based multimedia-enhanced didactic curriculum and an online multiple choice cognitive exam. The program is being designed to certify that a successful candidate has the demonstrated knowledge fundamental to the safe use of surgical energy-based devices in the operating room, endoscopic suite and other procedural areas.

Example: FUSE

*Feldman LS, Fuchshuber P, Jones DB, Mischna J, Schwaitzberg SDFundamental Use of Surgical Energy (FUSE) Certification: Validation and Predictors of Success. Surg Endosc. 2015 In Press.

ADDIE Framework:

- Analyze
- Design
- Develop
- Implement
- Evaluate

Evaluate Training:

- Development of surgical expertise
- Levels of outcomes: Kirkpatrick framework

Results (patient outcomes)

Behavior (performance)

Learning (skills)

Reaction (self-reported)

Evaluate Training:

Level 1: questionnaires

Results (patient outcomes)

Behavior (performance)

Learning (skills)

Reaction (self-reported)

Evaluate Training:

Loval 2. knowladge (avamination) skills

Evaluate Training:

 Level 3: performance on patients (errors, global rating scales, checklists, time, accuracy)

Behavior (performance)

Learning (skills)

Reaction (self-reported)

Evaluate Training:

 Level 4: patient outcomes (complications, mortality, patient-reported outcomes)

Behavior (performance)

Learning (skills)

Reaction (self-reported)

Evaluate Training:

- Developing metrics and assessment tools:
 - Objective
 - Measurable
 - Specific
 - Validity
 - Evidence-based
 - Task/skill dependent

Evaluate Training:

- Choosing metrics and assessment tools:
 - Appropriate learning domain (cognitive, attitudes, psychomotor)
 - Depth of learning
 - Current proficiency
 - Available resources
 - Fidelity
 - Psychometric properties

GLOBAL RATING SCALE OF OPERATIVE PERFORMANCE

Please circle the number corresponding to the candidate's performance in each category, irrespective of training level.

T

4

11	S	T 1	Respect for Tissue:					
			1 Frequently used unnecessary force on tissue or caused damage by inappropriate use of instruments	2	3 Careful handling of tissue but occasionally caused inadvertent damage	4	5 Consistently handled tissues appropriately with minimal damage	
<u>Ev</u>	'al	U	Time and Motion:	2	3	4	5	
	Ex	a	Many unnecessary moves		Efficient time/motion but some unnecessary moves		Clear economy of movement and maximum efficiency	cystic
ţ	tria	ar	Instrument Handling: 1	2	3	4	5	
[L(Repeatedly makes tentative or awkward moves with instruments by inappropriate use of instruments		Competent use of instruments but occasionally appeared stiff or awkward		Fluid moves with instruments and no awkwardness	זפ
		di	Knowledge of Instruments: 1	2	3 Knew names of most instruments	4	5 Obviously familiar with the	
(L	wrong instrument or used inappropriate instrument		and used appropriate instrument		instruments and their names	Ince
		นเ	Flow of Operation:	2	3	4	5	core
		te	Frequently stopped operating and seemed unsure of next move		Demonstrated some forward planning with reasonable progression of procedure		Obviously planned course of operation with effortless flow from one move to the next	
(L(Use of Assistants: 1	2	3 Appropriate use of assistants	4	5 Strategically used excitants	J
		cł	poorly or failed to use assistants		most of the time		to the best advantage at all times	
(L	Knowledge of Specific Procedure: 1 Deficient knowledge Newled	2	3 Knew all immortant	4	5 Demonstrated familiarity with	re,
		h	specific instruction at most steps		steps of operation		all aspects of operation	

Evaluate Training:

How do you interpret scores?

High score = (?) Expert

- Validity evidence for metrics:
 - Content
 - Response process
 - Internal structure
 - Relationship to variable
 - Consequences

^{*} Downing SM. Validity: on the meaningful interpretation of assessment data. *Medical Education* 2003; 37:830-7.

Evaluate Training:

- Providing feedback
 - Summative
 - Formative

PASS I

Evaluate Training:

Deliberate practice

Instructional Design

ADDIE Framework:

- Analyze
- Design
- Develop
- Implement
- Evaluate

Instructional Design

Other Considerations:

- Spacing effect:
 - "Bolus" training vs. distributed training
 - Distributed training improves long-term performance*
- Example
 - 1 session, 4 hours

*Moulton CA, et al (2006). Teaching Surgical Skills: what kind of practice makes perfect? Annals of Surgery 244(3): 400-409.

Instructional Design

Other Considerations:

- Mixed Practice:
 - Training multiple skills mixed together improves performance, compared to teaching one skill at a time
- Example: teaching skills a, b, c
 - □ aaaaa \rightarrow bbbbb \rightarrow ccccc

Example: FUSE

Table 3 Most highly rated objectives in the FUSE program (score > 5.70)

.<u>\\</u>RG/*C*

Surg Endosc (2013) 27:4054-40:	Objective	Section	Score	- 20. · · ·
DOI 10.1007/s00464-013-3059-4	Identify various mechanisms whereby electrosurgical injuries may occur	2	6.38	
	Identify general patient protection measures for setup and settings for the electrosurgical unit	2	6.24	
Rationale for th	Identify circumstances, mechanisms, and prevention of dispersive electrodes-related injury	2	6.05	'gy TM (FUSE)
Liane S. Feldman · L. Mic	Identify the characteristics of monopolar and bipolar instruments and the differences between them	1	5.97	
Stephanie B. Jones · Jessic	Identify circumstances which promote OR fires and identify prevention strategies	2	5.90	
Steven D. Schwaltzberg · I	Identify circumstances, mechanisms, and prevention of direct coupling-related injury	2	5.85	
	Identify implanted devices and patients with implanted devices that might be adversely affected by RF energy	10	5.84	
Received: 25 February 2013/Ac © Springer Science+Business M	The score is the average rating for importance quency (range = $1-7$)	e, relevance,	and fre-	

FUNDAMENTAL USE OF SURGICAL ENERGY

- Types of simulation for surgical training:
- Simulated patients
- Virtual patients
- Mannequin simulators
- Task trainers (e.g. FLS)
- Low-technology screen-based simulation (e.g. serious games)
- Virtual reality

Why simulation:

- Immersive learning ("learning in context")
- Experiential learning ("learning by doing")
- Re-create rare scenarios
- Re-create difficult scenarios
- Re-create scenarios that allow learner to work on weaknesses (i.e. focused training → deliberate practice)
- Provides an environment to obtain formative feedback (e.g. replay video of performance) and immediately practice after
- Reproducible for repetition

Why simulation:

- Improves training
- Improves patient safety (free of adverse events)
- Decreases long-term costs (i.e. reducing time and costs for training)
- Improves communication and team dynamics

Barriers to simulation for surgical training*:

- Inadequate resources (personnel, equipment, costs)
- Limited availability of faculty to teach
- Limited incentives for faculty to teach
- Inadequately trained faculty
- Not tailoring the simulation-based curriculum for local training needs
- Does not replace "real" clinical experience complimentary

*Stefanidis D, et al (2015). Simulation in Surgery: What's Next? Annals of Surgery 261(5): 846-853.

FUSE Simulation Course for Surgeons:

FUNDAMENTAL USE OF SURGICAL ENERGY
Simulation for Surgical Education FUSE Simulation Course for Surgeons:

1. Device Setup

3. Adverse Events (Open) 4. Adverse Events (Laparoscopy)

Simulation for Surgical Education FUSE Simulation Course for Surgeons:

Surg Endosc DOI 10.1007/s00464-015-4260-4

Structured simulation improves learning of the Fundamental Use of Surgical EnergyTM curriculum: a multicenter randomized controlled trial

Amin Madani¹ · Yusuke Watanabe¹ · Nicole Townsend² · Philip H. Pucher³ · Thomas N. Robinson² · Patricia E. Egerszegi⁴ · Jaisa Olasky⁵ · Sharon L. Bachman⁶ · Chan W. Park⁷ · Nalin Amin⁸ · David T. Tang⁹ · Erika Haase¹⁰ · Davide Bardana¹¹ · Daniel B. Jones⁵ · Melina Vassiliou¹ · Gerald M. Fried¹ · Liane S. Feldman¹

Received: 14 February 2015/Accepted: 24 April 2015 © Springer Science+Business Media New York 2015

学習目標

- 1. 高周波エネルギーが細胞/組織におよぼす影響
- 2. 高周波エネルギーデバイスに関わる用語
- 3. エレクトロサージカルユニット(電気メス本体)の役割
- 4. モノポーラとバイポーラの違い
- 5. エネルギーデバイス関連有害事象の発生メカニズム
- 6. 有害事象の回避する方法
- 手術室火災を防ぎ、また手術室火災にどのように対処す るか

OR Fires – Fire Triangle

IGNITION SOURCE

Surgeons - ESUs, lasers, etc.

Locations of Surgical Fires

Fire Triangle – Oxidizer (oxygen, nitrous oxide)

- マスク使用時は酸素流量を最小化
- ラリンゲルマスクを考慮
- 酸素濃度は30%以下に
- 気管切開:実際に気管を切る際は、電気メス を使用しないようにする

手術室火災 OR fires

Fire Triangle – Oxidizer (oxygen, nitrous oxide) – 気道熱傷は特に危険

Fire Triangle – Fuel (prepping agent, drapes)

• アルコール系消毒薬による熱 傷(4%)

乾いた後のドレーピング

Pooled Alcohol-Based Prep

手術室火災 OR Fires

Fire Triangle – Ignition Source

- 70%はエレクトロサージャリー に起因
- •10%はレーザー
- •20%は光源機器関連、手術用ド リル、除細動器

<u>ALWAYS</u>

- ・光源機器の電源は直前に入れる
 ・光源を外す前に電源を切る使用しない
- •使用しない時にケース(プラス チック)に収納

High Intensity Light Source

OR Fires

手術室火災 OR Fires

最良の対処は:

予防 (Minimize all risks)

手術室火災 予防策

- 頭頸部手術では使用する酸素をできるだけ減らす
- ドレープの下で酸素が充満していることがある
 (ドレープをしっかりはる)
- 消毒液が完全に乾くまでドレープをしない(余剰 液の除去)
- 光源の電源は使用する直前に入れる
- できるかぎり低い出力設定で使用

手術室火災 – 対処

- 1. 酸素使用の中断
 - 呼吸器回路からはずす
 - Airway fires: 抜管
- 2. 可燃物の除去 (ドレープ等)
- 3. 燃えている炎の消火
- 4. 患者ケア
 - 必要があれば再抜管 (Airway fires)
 - 熱傷への処置

OR Fires

Summary

- Surgical performance is complex
- No "perfect" way for training experts
- A systematic process will help ensure effective training is produced
 - Adhering to best-practices in education
- Simulation can add significant value to training and for assessment

THANK YOU

